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1. Introduction

Functionally graded materials (FGM) constitute an important area of materials science
research, with potentially many practical applications. In the structures made of FGM, the
material properties vary smoothly in the thickness dimension. Reviews of current FGM research
may be found in the articles by Hirai [1] and Markworth et al. [2], and the book by Suresh and
Mortensen [3]. In an FGM, the composition and structure gradually change over volume,
resulting in corresponding changes in the properties of the material. It is envisioned that the
functional grading will also be performed in the axial direction. The seeds of such researches,
although only in the analytical setting, were planted some time ago. Apparently, Dinnik [4], was
the first to study beams with variable material density for the vibrations of strings. Recently non-
homogeneity in the material density was investigated by Masad [5], and Pronsato et al. [6],
amongst others. Specifically, they considered a piece-wise constant variation of the density.
Continuously varying material density but with constant elastic modulus has been investigated by
Gutierez et al. [7]. A quite general formulation on free vibrations of non-uniform beams on elastic
foundation, containing the characteristics of both the Winkler and the Pasternak foundation is
due to Eisenberger [8] and Eisenberger and Clastornik [9]. They dealt with beams with constant
modulus of elasticity and constant material density, but variable cross-section. In recent studies
the present authors [10,11] investigated a special class of an inverse vibration problem for
r 2004 Published by Elsevier Ltd.
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resses: icalio@dica.unict.it (I. Caliò), elishako@fau.edu (I. Elishakoff).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

I. Caliò, I. Elishakoff / Journal of Sound and Vibration 280 (2005) 1083–10941084
inhomogeneous beams on elastic foundation considering beams with variable elastic modulus and
material density. Here the objective is to widen the class of closed-form solution for such axially
graded beams in which the material characteristics vary smoothly in the axial direction.
Specifically two cases of harmonically varying vibration modes are postulated, corresponding to
beam-columns with elastically guided end conditions, and appropriate semi-inverse problems are
solved.
2. Formulation of the problem

Let us consider an axially graded beam resting on elastic foundation subjected to an axial
loading. The beam’s length is L, cross-sectional area A is constant, flexural rigidity is denoted by
D(x), and varying material density by rðxÞ: The governing differential equation of the dynamic
behavior of such an inhomogeneous beam on an elastic foundation reads

q2

qx2
DðxÞ

q2wðx; tÞ

qx2

� �
þ

q
qx

NðxÞ
qwðx; tÞ

qx
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qwðx; tÞ

qx

� �
þ kW ðxÞwðx; tÞ � rðxÞA

q2wðx; tÞ

qt2
¼ 0;

ð1Þ

where x is the axial coordinate, t is the time, wðx; tÞ is the transverse displacement, NðxÞ is the axial
compressive load distribution, kW ðxÞ is the variable coefficient of the Winkler foundation, and
kPðxÞ is the variable coefficient of the Pasternak foundation. The coefficient kPðxÞ was introduced
by Pasternak [12] and Vlasov and Leontiev [13].

In this study the differential equation (1) will be solved in a closed form for two sets of
boundary conditions corresponding to the following beams: (a) simply supported at one end and
elastically guided at the other, (b) elastically guided at both its ends. For simplicity, the non-
dimensional co-ordinate x ¼ x=L is introduced. Harmonic vibration is studied so that the
displacement w(x,t) is represented as follows:

wðx; tÞ ¼ W ðxÞeiot; ð2Þ

where W ðxÞ is the postulated mode shape and o is the corresponding natural frequency that
should be determined. Upon substitution of Eq. (2) into Eq. (1), the latter becomes

d2
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d2W ðxÞ

dx2

� �
þ L2 d

dx
NðxÞ

dW ðxÞ
dx

� kPðxÞ
dW ðxÞ

dx

� �
þ L4 kW ðxÞ � rðxÞAo2

� �
W ðxÞ ¼ 0: ð3Þ

The semi-inverse eigenvalue problem is posed as follows: find an axially graded beam with a
specified harmonic mode, W ðxÞ; that satisfies the boundary conditions and the governing dynamic
differential equation. This semi-inverse problem requires the determination of the distribution of
flexural rigidity, DðxÞ, that together with a specific law of material density, rðxÞ, for particular
variability of soil properties, defined by the Winkler and Pasternak coefficients, and according to a
specific axial load distribution, NðxÞ, satisfies the governing eigenvalue problem.
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The flexural rigidity, DðxÞ, and the axial force, NðxÞ, are represented as follows:

DðxÞ ¼ A0 þ A1 sinðjpxÞ þ A2 cosðjpxÞ; ð4Þ

N xð Þ ¼ B0 þ B1 sin gpxð Þ þ B2 cos gpxð Þ; ð5Þ

where A0, A1, A2, B0, B1, B2 are constants, while j and g are real numbers. The posed semi-inverse
problem may have no solution or it may possess multiple solutions or a unique solution. It will be
shown that for a specified distribution of material density the solution turns out to be a unique
one.
3. Beam that is simply supported at one end and elastically guided at the other

For a beam that is simply supported at one end and guided, with an elastic spring, at the other,
the boundary conditions read

W ð0Þ ¼ 0; W 00ð0Þ ¼ 0;

W 0ð1Þ ¼ 0; ½DðxÞW 00ðxÞ�0 þ kL3W ðxÞj1 ¼ 0: ð6a2dÞ

The unknown vibration mode, represented in Fig. 1a, is taken as

W ðxÞ ¼ cðxÞ ¼ sin
p
2
x

� �
: ð7Þ

At this stage a non-trivial question arises: does the function in Eq. (7) satisfy the condition in
Eq. (6d)? We will postpone replying to this question until later on.

Furthermore, the following trigonometric representation of the stiffness is considered:

DðxÞ ¼ A0 1 þ a cos
p
2
x

� �h i
; ð8Þ

in conjunction with the harmonic distribution of axial load

NðxÞ ¼ l 1 þ b cos
p
2
x

� �h i
; ð9Þ

and the following distribution of the Pasternak coefficient function:

kPðxÞ ¼ k̂P 1 þ b cos
p
2
x

� �h i
: ð10Þ

By considering the assumed distributions given by Eqs. (8)–(10) together with the postulated
vibration mode the first two terms of the differential equation (3) can be rewritten as

RðxÞ ¼ 1
16
p2 p2A0 1 þ 4a cos

p
2
x

� �h i
� 4L2ðl� k̂PÞ 1 þ 2b cos

p
2
x

� �h in o
sin

p
2
x

� �
: ð11Þ

In order to obtain a multiplicative representation it is sufficient to fix b at 2a; to obtain

RðxÞ ¼ 1
16
p2 p2A0 � 4L2 l� k̂P

� �h i
1 þ 4a cos

p
2
x

� �h i
sin

p
2
x

� �
: ð12Þ
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Fig. 1. Beam on elastic foundation that is simply supported at one end and elastically guided at the other (a ¼ 0:1).

(a) Vibration mode; (b) distribution of the flexural rigidity; (c) axial load distribution, and Pasternak coefficient

function; (d) material density distribution and Winkler coefficient function.
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Bearing in mind the postulated vibration mode, Eq. (7), the differential equation (3) takes the
form

1
16
p2 p2A0 � 4L2 l� kPð Þ
� �

1 þ 4a cos
p
2
x

� �h i
þ L4 kW ðxÞ � rðxÞAo2

� �n o
sin

p
2
x

� �
¼ 0: ð13Þ

Eq. (13) is satisfied for all the distributions of material density rðxÞ and Winkler coefficient
function kW ðxÞ that are proportional to the following quantity:

f ðxÞ / 1 þ 4a cos
p
2
x

� �
: ð14Þ

Therefore we assume

rðxÞ ¼ r0 1 þ 4a cos
p
2
x

� �h i
; ð15Þ

kW ðxÞ ¼ k̂W 1 þ 4a cos
p
2
x

� �h i
: ð16Þ

In order to obtain positive values of density distribution and Winkler coefficient distribution
the inequality a4� 1

4
must be imposed. We consider the following particular cases:

Case 1: homogeneous beam: a ¼ 0: This case corresponds to a beam with constant stiffness
DðxÞ ¼ A0 subjected to a constant axial loading NðxÞ ¼ l ¼ P: Then, for rðxÞ ¼ r0 ¼ const;
kW ðxÞ ¼ k̂W ¼ const and kpðxÞ ¼ k̂p ¼ const the natural frequency of the homogeneous beam on
uniform elastic foundation under constant axial load is obtained

o2 ¼
p2

16

p2A0 þ 4k̂PL2 � 4PL2
� �

r0AL4
þ

k̂W

r0A
¼

p2
�
16

� 
p2A0 þ 4k̂PL2 � 4PL2

� �
þ k̂W L4

r0AL4
: ð17Þ

In this case the natural frequency vanishes if the load P equals the critical buckling value that is
given by

Pcr ¼ k̂P þ 4
k̂W L2

p2
þ

p2

4

A0

L2
ð18Þ

It appears that expressions (17) and (18) have never previously been reported in the
literature.

Case 2: Axial graded beam: aa0: Consider the non-uniform beam with the material density and
axial load distribution, respectively,

rðxÞ ¼ r0 1 þ 4a cos
p
2
x

� �h i
; NðxÞ ¼ l 1 þ b cos

p
2
x

� �h i
: ð19Þ

The elastic foundation possesses the following Winkler and Pasternak coefficient functions:

kW ðxÞ ¼ k̂W 1 þ 4a cos
p
2
x

� �h i
; kPðxÞ ¼ k̂P 1 þ b cos

p
2
x

� �h i
: ð20Þ

The following natural frequency is derived:

o2 ¼
p2

16

p2A0 þ 4k̂PL2 � 4lL2
� �

r0AL4
þ

k̂W

r0A
¼

p2
�
16

� 
p2A0 þ 4k̂PL2 � 4lL2

� �
þ k̂W L4

r0AL4
: ð21Þ
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It is remarkable that this expression formally coincides with its counterpart, in Eq. (17), that is
valid for the homogeneous beam on uniform elastic foundation under constant axial load. The
natural frequency does not depend on the parameter a; it depends only on A0, r0 and on the
foundation coefficients k̂W and k̂P: The natural frequency vanishes if the distribution of load
attains its critical value

lcr ¼ k̂P þ 4
k̂W L2

p2
þ

p2

4

A0

L2
: ð22Þ

Now we recall the important question posed earlier whether or not the boundary
condition (6d) is satisfied. Obviously, for an arbitrary value of the stiffness k, the
boundary condition will not be satisfied. The special value of the stiffness of the linear elastic
spring at the guided end can be evaluated by imposing the satisfaction of the natural boundary
condition (6d).

By substituting expressions (7) and (6d) and (8) we obtain

1
8
A0p3 a sin

px
2

� �2

� cos
px
2

� �
1 þ a cos

px
2

� �� �( )
� kL3 sin

px
2

� ������
1

¼ 0 ð23Þ

from which the sought value of the elastic spring at the guided end is derived as

k ¼ aA0p3=8L3: ð24Þ

For any fixed value of the parameter A0 the stiffness of the elastic spring varies linearly
with the parameter a that identifies the particular distribution of stiffness and material
density. It is worth noting that in the limiting case of the homogeneous beam, a ¼ 0; the
boundary condition (6d) is satisfied for k ¼ 0; which corresponds to the guided end. Further-
more, by considering that the stiffness k must be positive, the more stringent inequality,
namely aX0; is derived compared to the previously obtained one, a4� 1

4
: With reference

to axially graded beams it is important to emphasize the remarkable and unanticipated
independence of the eigenvalue, given by expression (21), from the coefficient a: Hence
different beams characterized by the same values of A0 and r0 but different values of a have
the same eigenvalues and mode shape. For example, with reference to a vibration problem
without axial load distribution, this means that if we consider two beams with different
values of a (corresponding to different distributions of flexural rigidity, material density and
different elastic foundation stiffness distributions) but with springs characterized by the
corresponding values of kðaÞ; given by Eq. (24), these two beams will share the same frequency
and vibration mode. Hence the difference in the distribution of the stiffness, material density and
elastic foundation properties is somewhat compensated by the different values of the elastic
spring.

For example, two beams characterized by

DðxÞ ¼ 1 þ � cos
p
2
x

� �h i
; rðxÞ ¼ r0 1 þ 4� cos

px
2

� �� �
;
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(I) k ¼ �A0p3=8L3 with �X0

kPðxÞ ¼ k̂P 1 þ � cos
p
2
x

� �h i
; kW ðxÞ ¼ k̂W 1 þ 4� cos

px
2

� �� �
;

DðxÞ ¼ 1 þ g cos
p
2
x

� �h i
; rðxÞ ¼ r0 1 þ 4g cos

px
2

� �� �
;

(II) k ¼ gA0p3=8L3 with gX0

kPðxÞ ¼ k̂P 1 þ g cos
p
2
x

� �h i
; kW ðxÞ ¼ k̂W 1 þ 4g cos

px
2

� �� �

share the same vibration mode, given by Eq. (7), and the same frequency, expressed by Eq. (21).
This is because coefficient � or g does not appear in Eq. (21).

In Fig. 1 the normalized distributions of flexural rigidity, axial load, material density and
foundation coefficient functions, corresponding to the case a ¼ 0:1; are reported.
4. Beam that is elastically guided at both ends

For a beam on elastic foundation that is elastically guided at both its ends the boundary
conditions, which take into account the presence of identical elastic springs at the ends of beam, are

W 0ð0Þ ¼ 0; DðxÞW 00ðxÞ½ �
0
� kL3W ðxÞj0 ¼ 0;

W 0ð1Þ ¼ 0; DðxÞW 00ðxÞ½ �
0
þ kL3W ðxÞj1 ¼ 0: ð25a2dÞ

The vibration mode, reported in Fig. 2a, is postulated as

W ðxÞ ¼ cðxÞ ¼ cosðpxÞ: ð26Þ

In addition, the following representation of the flexural rigidity is considered:

DðxÞ ¼ A0 1 þ a sin pxð Þ½ �: ð27Þ

Likewise, similar distributions of axial load and Pasternak coefficient functions are postulated

NðxÞ ¼ l 1 þ b sin pxð Þ½ �; ð28Þ

kPðxÞ ¼ k̂P 1 þ b sin pxð Þ½ �: ð29Þ

By considering expressions (26)–(29) the first two terms of the differential equation (3) become

RðxÞ ¼ p2 p2A0 1 þ 4a sin pxð Þ½ � � L2 l� k̂P

� �
1 þ 2b sin pxð Þ½ �

n o
cos pxð Þ: ð30Þ

By setting b ¼ 2a; Eq. (30) assumes the simpler, multiplicative, expression

RðxÞ ¼ p2 p2A0 � lL2 þ kPL2
� �

1 þ 4a sin pxð Þð Þ cos pxð Þ: ð31Þ
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Fig. 2. Beam on elastic foundation that is elastically guided at both ends (a ¼ 0:2). (a) Vibration mode; (b) distribution

of the flexural rigidity; (c) axial load distribution, and Pasternak coefficient function; (d) material density distribution

and Winkler coefficient function.
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Bearing in mind the postulated vibration mode in Eq. (26), the differential equation (3) takes
the following final form:

p2 p2A0 � lL2 þ kPL2
� �

1 þ 4a sin pxð Þð Þ þ L4 kW xð Þ � r xð ÞAo2
� �� �

cos pxð Þ ¼ 0: ð32Þ

It is easy to recognize that Eq. (32) is satisfied for the following distributions of material density
rðxÞ and Winkler coefficient function kW ðxÞ:

rðxÞ ¼ r0 1 þ 4a sin pxð Þ½ �; ð33Þ

kW ðxÞ ¼ k̂W 1 þ 4a sin pxð Þ½ �: ð34Þ

Furthermore, the inequality a4� 1
4

must be introduced in order to obtain a positive material
density distribution. We consider the following particular cases:

Case 1: Homogeneous beam: a ¼ 0: This first case corresponds to the homogeneous beam,
DðxÞ ¼ A0; subjected to a constant axial load, NðxÞ ¼ l ¼ P: Assuming rðxÞ ¼ r0 ¼ const; the
natural frequency is of the homogeneous beam-column on elastic foundation guided at both its
ends is obtained

o2 ¼
p2 p2A0 þ k̂PL2 � PL2
� �

rAL4
þ

k̂W

r0A
¼

p2 p2A0 þ k̂PL2 � PL2
� �

þ k̂W L4

r0AL4
: ð35Þ

The natural frequency vanishes if the load P equals the critical buckling value that is given by

Pcr ¼ k̂P þ
k̂W L2

p2
þ p2 A0

L2
: ð36Þ

It is interesting to recognize that expressions (35) and (36) are formally identical to the
corresponding expressions of the homogeneous simply supported beam-column on uniform
elastic foundation reported in Ref.[11].

Case 2: Axial graded beam: aa0: According to the expressions (28) and (33) the following
distributions of axial force and material density are introduced:

NðxÞ ¼ l 1 þ 2a sin pxð Þ½ �; rðxÞ ¼ r0 1 þ 4a sin pxð Þ½ � ð37Þ

while the Winkler and the Pasternak coefficient functions are taken as

kW ðxÞ ¼ k̂W 1 þ 4a sin pxð Þð Þ; kPðxÞ ¼ k̂P 1 þ 2a sin pxð Þð Þ: ð38Þ

Therefore the natural frequency reads

o2 ¼
p2 p2A0 þ k̂PL2 � lL2
� �

r0AL4
þ

k̂W

r0A
¼

p2 p2A0 þ k̂PL2 � lL2
� �

þ k̂W L4

r0AL4
ð39Þ

which vanishes if the distribution of load reaches its critical value

lcr ¼ k̂p þ
kW L2

p2
þ p2 A0

L2
: ð40Þ
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Expressions (39) and (40) are formally equivalent to the corresponding expressions of
homogeneous beam under constant axial load (35) and (36). It must be noted that the natural
frequencies and the buckling load obtained for the axially graded beam guided at both its ends
have the same analytical expressions as those obtained in Ref. [11] for the simply supported
axially graded beam but refer to different distributions of flexural rigidity, axial load, material
density and elastic foundation coefficient functions.

The values of the stiffness of the elastic supports, corresponding to the reported solution, are
derived hereinafter by imposing the fulfillment of the natural boundary conditions at both ends.
By substituting the postulated mode and the distribution of the stiffness in to the expressions (25b)
and (25d) the value of the elastic spring, equal at both ends, is derived

k ¼ aA0Ip3
�

L3: ð41Þ

It is worth noting that guided axially graded beams on elastic foundation, with elastic
distributions specified by Eqs. (38), for which the stiffness of the springs at the ends are specified
by Eq. (41) and have stiffness and density distribution given by Eqs. (27) and (33) and are
eventually subjected to an axial load distribution, given by Eq. (37a), are all characterized by the
same mode, Eq. (26), and the same fundamental frequency, given by expression (39), independent
of the particular value of the parameter a that characterizes the particular distributions of
stiffness, density, axial load and foundation coefficients. Bearing in mind that the stiffness k must
be positive, in this case also a more stringent inequality, aX0; must be considered than the one
derived before a4� 1

4
: The distributions of flexural rigidity, axial load, material density and

foundation coefficient functions are reported in Fig. 2 for the case a ¼ 0:2:
5. Comparison with the results obtained via the Rayleigh quotient

Since all the solutions reported above are written in the closed form, they do not need an
additional corroboration. Still, it is of some interest to compare them with the results derived by
any approximate method in order to possibly gain additional insight. Therefore, the natural
frequencies were also calculated by using the Rayleigh quotient

o2 ¼

Z L

0

DðxÞ f00
ðxÞ

� �2
dx �

Z L

0

NðxÞ f0
ðxÞ

� �2
dx þ

Z L

0

kW ðxÞ fðxÞ½ �
2 dx þ

Z L

0

kPðxÞ f
0
ðxÞ

� �2
dx þ k fð0Þ½ �

2
þ k fðLÞ½ �

2

� � Z L

0

ArðxÞ fðxÞ½ �
2 dx

� ��1

:

ð42Þ

By substituting into the Rayleigh quotient the exact mode shape of vibration the exact

eigenvalues, expressed by the Eqs. (21) and (39), have been re-obtained. For the approximate
evaluation, polynomial trial functions are used for simplicity. The results of the comparison are
reported in Table 1.

The approximate results are slightly dependent on the parameter a, while the closed form
solution does not exhibit such a dependence. The results reported in the table are referred to a
value of a ¼ 0:5:

The solutions reported herein can be used as benchmark problems. Also, in the future when the
technology will be available to produce any desired distribution of flexural rigidity along the axis
of the beam on a variable elastic foundation and a given variation of material density rðxÞ; one



ARTICLE IN PRESS

Table 1

Verification of the analytical results (a ¼ 0:5)

Boundary condition Polynomial trial

function

Results obtained via Rayleigh’s quotient Difference with

closed-form solution

(%)

S–G 8x� 4x3
þ x4

o2 ¼
p4A0I�p2lL2

16r0AL4

l ¼ 0 o2 ¼ 6:0944 A0I

AL4
0.10

o ¼ 0 lcr ¼ 2:469 A0I

L2
0.09

G–G 1 � 6x2
þ 4x3

o2 ¼
98:339A0I�9:879lL2

r0AL4

l ¼ 0 o2 ¼ 98:339 A0I

r0AL4
0.95

o ¼ 0 lcr ¼ 9:953 A0I

L2
0.84
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will be able to design axially graded beams with pre-selected natural frequency or buckling load
values. Thus, the methodology of solving semi-inverse problems presented in this study may
represent a valuable design tool for vibration and buckling problems within the trigonometric
class of inhomogeneity.
6. Conclusion

Apparently for the first time in the literature closed solutions have been derived for the natural
frequencies of axially graded beam-columns on elastic foundation with guided end conditions. As
particular cases the frequencies and buckling loads of the corresponding homogeneous beams
have been obtained. The distributions of the flexural rigidity, material density as well the
variability of foundation coefficients are sought in terms of trigonometric functions. The
trigonometric function was also postulated for the mode shape; conditions were established for
which this postulate holds. This seemingly transparent approach yields a series of new non-trivial
closed-form solutions.
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I. Caliò, I. Elishakoff / Journal of Sound and Vibration 280 (2005) 1083–10941094
[5] J.A. Masad, Free vibration of a non-homogeneous rectangular membrane, Journal of Sound Vibration 195 (1996)

674–678.

[6] M.E. Pronsato, P.A.A. Laura, A. Juan, Transverse vibration of a rectangular membrane and discontinuously

varying density, Journal of Sound Vibration 222 (1999) 341–344.

[7] R.H. Guttierez, P.A.A. Laura, D.V. Bambill, V.A. Jederlinic, D. Hodges, Axisymetric vibrations of solid circular

and annular membranes with continuously varying density, Journal of Sound Vibration 212 (1998) 611–622.

[8] M. Eisenberger, Vibration frequencies for beams on variable one- and two-parameter elastic foundations, Journal

of Sound Vibration 176 (1994) 577–584.

[9] M. Eisenberger, J. Clastornik, Vibration and buckling of a beam on a variable Winkler elastic foundation, Journal

of Sound Vibration 115 (1987) 233–241.

[10] I. Elishakoff, Some unexpected results in vibration of non-homogeneous beams on elastic foundation, Chaos

Solitons and Fractals 12 (2001) 2177–2218.
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